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Abstract

This paper investigates multi-quadric radial basis function (RBF) interpolation and its application in the quantum
trajectory method (QTM) for wave packet propagation. In the multi-quadric, ¢(r;9) = (* + (32)1/2, r is the radial
distance from the observation point to the origin of the basis function, ¢, and ¢ is known as the shape parameter due to
its affect on the functional form of the basis function. The quality of any RBF interpolation scheme is dictated by the
choice of this parameter. Many recent studies have investigated a suitable means for obtaining an “optimized” time-
independent 6 parameter. The purpose of this study, however, is to not only to find this “optimized” shape parameter,
but also to analyze its time-dependence in four different dynamical models; the anisotropic harmonic oscillator, the
downhill ramp, the uphill ramp, and a harmonic oscillator coupled with a downhill ramp. To obtain the optimized
shape parameter at each time step, an algorithm similar to the leave-one-out method of cross-validation is utilized. The
results for each of the four models are presented, and the feasibility and necessity of employing a shape parameter
optimization algorithm for each of the models is discussed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The de Broglie-Bohm casual hydrodynamic formulation of quantum mechanics was first introduced by
Madelung [36] and de Broglie [6] in the late 1920s and then rediscovered by Bohm [3,4] in early 1950s.
Today, a comprehensive study of the hydrodynamic formulation can be found in Bohm [5] and Holland’s
[23] books, both of which provide many of the technical details that are beyond the scope of this paper. In
1999, the quantum trajectory method (QTM) was introduced for the computational application of the de
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Broglie-Bohm hydrodynamic formulation of quantum mechanics [59,60] and has since then attracted a
large number of theoretical studies in quantum dynamics [1,2,7,24,25,31-35,44,56-60]. Such efforts have
been focused on the QTM due to the low-resolution spatial grids needed to accurately capture wave packet
dynamics, especially in multi-dimensional and unbound models. This asset of the QTM is a result of the
Lagrangian framework inherent in the quantum hydrodynamic equations of motion. Because fluid ele-
ments are not fixed in space and are able to move along with the dynamics of the wave packet, the spatial
domain needed for propagation is much smaller than in typical Eulerian fixed-grid simulations. Also, since
the complex-valued quantum mechanical wavefunction is an oscillatory function in space, propagating the
much smoother real-valued phase and amplitude functions requires fewer grid points, which can result in
less computational work for obtaining spatial derivatives.

By far, the most challenging feature of the QTM, ironically, concerns the Lagrangian framework in
which it flourishes. To integrate the equations of motion for reasonably long times, very accurate spatial
derivatives are needed on an unstructured grid defined by the fluid element positions. This can become
quite a difficult task, since errors tend to accumulate at boundaries or under-sampled regions with few
grid points. The most widely used technique, so far, for obtaining function and derivative approxi-
mations has been the moving weighted least squares algorithm using a local polynomial basis. This
method has been quite accurate for a limited number of models in the QTM (see Lopreore and Wyatt’s
publications on electronic transitions with quantum trajectories [33,34], Bittner’s analysis of the double
well potential [1], Wyatt and Na’s analysis of multi-mode subsystem-bath dynamics [56], and Sales-
Mayor et al.’s work on the molecular photodissociation [44]). Some problems can arise, however, with
the use of polynomials that represent possible limitations to its application. According to Kansa [26],
two drawbacks to polynomial schemes include polynomial snaking in higher-order models leading to
poor derivative or integral estimates and the slow convergence of low-order polynomial approximations.
Also, as the dimensionality of the model increases, the number of polynomial basis functions increases
dramatically, significantly slowing down the solution of the linear system. Because of this, fitting
schemes other than polynomial methods have been investigated for use with the unstructured mesh
encountered in the Lagrangian frame. One such method includes radial basis function (RBF) interpo-
lation.

There have been tremendous advances in RBF theory throughout the last decade in publications by
Hardy [16-20], Madych [37-39], Carlson [9-11] and Foley [13], Schaback [45-53], and Kansa [26-30] to
name only a few. In a study on the solution of the Lagrangian quantum fluid dynamical equations with
RBF interpolation, Hu et al. [24,25] reported excellent results for free 2D and 3D wave packets, a 2D
coherent state harmonic oscillator, and a 2D model for the photodissociation of NOCI. The first three of
these four models were compared with the analytical solutions and the errors in the amplitude were found
to be quite reasonable (see [24,25]). This particular study by Hu et al. utilized the power of the compactly
supported multi-quadric (MQ) radial basis function for all derivative approximations. The multi-quadric
has the form ¢(r,8) = (2 + 6°)'/%, where r is the radial distance from the observation point to the origin of
the basis function and 9 is a free parameter determining the shape of the basis function. It is well known
that the choice of this parameter can either greatly enhance or degrade the quality of the RBF interpolation
scheme [54].

Recently, most interpolates found with radial basis functions, such as the multi-quadrics, contain a free
parameter chosen such that the initial parameter value is used on all subsequent time steps. This parameter
can be chosen through a “trial and error” optimization on the initial conditions of the system (i.e., find the
best value of ¢ that minimizes a given error function for the initial amplitude and phase interpolations). In
some cases, such as the models investigated by Hu, a time-independent 6 parameter provides reasonable
results. According to Carlson and Foley [11], however, the value of the optimal § parameter strongly de-
pends on the form of the function to be interpolated, and if this function changes with time, so should the
shape parameter of the radial basis function.
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It is the purpose of this study to investigate the optimization and time-dependence of the free parameter
in the multi-quadric radial basis functions when they are employed in the quantum trajectory method. The
parameter ¢ will be determined through utilization of an algorithm introduced by Rippa [43], which is
similar to a cross-validation algorithm called the leave-one-out method. Since it is quite unreasonable to
obtain an optimized shape parameter at each time step through brute force iteration, a simple means for
updating ¢ is imperative. It is, therefore, our goal to emphasize the accuracy and simplicity of Rippa’s d(¢)
optimization algorithm for the purpose of implementing radial basis function interpolation in quantum
trajectory calculations.

This study is organized as follows: Section 2 presents the quantum hydrodynamic equations of motion
used in propagating the real-valued phase and amplitude functions. Section 3 provides some theoretical
background on radial basis function interpolation and describes the algorithm that will be implemented for
choosing the multi-quadric shape parameter at each time step. In Section 4, five time integrators are
presented for solving the quantum equations motions and are compared in accuracy and time efficiency. In
Section 5, three quantum mechanical models are described and the results of the QTM/RBF simulations
with time-dependent multi-quadric shape parameters are given.

2. QTM methodology

To derive the quantum hydrodynamic equations of motion for a particle of mass, m, in an external
potential V(7 ¢), the polar form of complex-valued wave function, ¥(7,¢) = R(7,¢)e"")/" is substituted
into the time-dependent Schrodinger equation and separated into real and imaginary parts, resulting in the
coupled pair of nonlinear partial differential equations

aSG¢)+(@SGJD2_ﬁiVﬂuxﬁﬂf“
/

ot 2m 2m (p(#, t))l 7 tVE) =0, (1)
p(F 1) = VSF )\
o *V'Gm>a 2)

where the probability density is defined as p(7,7) = R(7,1)*. The first of the two equations is called the
quantum Hamilton—Jacobi equation and is identical in form to its classical counterpart except for the
addition of the purely quantum term

7V (pF )"
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David Bohm has named this term the quantum potential [3,4]. The quantum potential is the source of all
quantum effects, and in the limit that Q — 0, the classical Hamilton—Jacobi equation is recovered. An
important feature of Q is that it depends only on the curvature of the wavefunction amplitude, not on its
magnitude.

Egs. (1)-(3) have been derived analytically from the Schrodinger equation; however, to numerically
integrate these equations the initial wave packet must be broken down into np discrete fluid elements with
positions 7. Each fluid element can be conceived as pursuing a definite continuous track in space and time
according to a guidance equation

. 1 =
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Along a trajectory, the density and phase of each fluid element is obtained by integrating Egs. (1) and (2),
while the fluid element velocities and positions are found by the evaluation and integration of Eq. (4). To do
this, the initial conditions 7(0), #(0), and p(0) must be specified. An important feature of the QTM is that
upon discretization, Eq. (4) provides a description of an ensemble of coupled trajectories, each with different
fluid element initial conditions. These trajectories are coupled by the nonlocal quantum potential from
Eq. (3).

If the gradient of the quantum Hamilton—Jacobi equation is taken, and the Lagrangian total time de-
rivative, d/d¢s = 0/0¢t + ¥ - V, is substituted into Egs. (1) and (2), the quantum equations of motion can be
derived in their more familiar forms

wi = SV F.0) + 0o, 7 1), 5
dp(#,1) _ =
WD (-9, G

where the first equation is similar to the Newtonian classical law of motion and the second is the probability
continuity equation. The continuity equation, can be analytically integrated giving

p(F 1+ di) = e ST ), (7)

where the exponential operator is called the density propagator. In this operator, the integral is evaluated
along the trajectory traversed by the fluid element in time.

As stated before, one very important computational benefit of the QTM is in the spatial discretization of
the phase and amplitude instead of the wave function directly. Very high-resolution spatial grids are fre-
quently needed in fixed-grid Eulerian methods due to the oscillatory nature of the complex-valued wave-
function, especially during high-energy simulations and models with many degrees of freedom. However,
because the phase and amplitude remain relatively smooth in time, propagating Eqs. (4)—(6) requires fewer
grid points for function approximation. In the past, to further alleviate the difficulty of obtaining accurate
derivatives for substitution into the equations of motion, C = In(R) has been propagated instead of the
amplitude directly. This replacement can be beneficial for two reasons. First, C will, in general, be smoother
than R, since it is not an oscillating function in space. For example, the typical Gaussian wave packet
reduces to a quadratic polynomial if the logarithm is taken. Secondly, the range of C may be much smaller
than R. For example, if R ranges from 10~7 <R < 1, the range for the Cis only —16 <R <0. Using this
replacement, the quantum potential to be substituted into the quantum Hamilton—Jacobi is derived from
Eq. (3) to be

W g
0= —%{VZC—I—VC-VC}. (8)

The C amplitude was propagated in all three of the models studied and the quantum potential was found
according to the above equation.

3. Spatial discretization
3.1. RBF interpolation
To solve Egs. (4)—(6) computationally, the continuous probability distribution is discretized into np fluid

elements at 1 = 0. Each fluid element has a mass m, an initial value location, 7;(t = 0), and is identified by a
descriptor, D;(t) = {7, U;, p;, S;}, which stores the state of the ith fluid element at future times. At each time
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step, extremely accurate spatial derivatives (i.e., VS, V2R, etc.) are needed at these locations for substitution
into the equations of motion before time discretization and wave packet propagation can proceed. Ob-
taining these spatial derivatives efficiently and accurately on the unstructured mesh encountered in the
Lagrangian frame of reference represents the greatest challenge for applications of the QTM.

In the last decade or so, radial basis function interpolation has attracted considerable interest due to
its simplicity in application and its potential to interpolate multi-variate scattered data relatively accu-
rately [8-11,13-22,24-30,37-41,43,45-55,61,62]. The typical interpolation scenario in the QTM involves

approximating the phase or amplitude with known descriptor values, {f(#), i =1,2,...,np} at each of
the discrete fluid element locations, {{x!,x?,...,x¢}, i=1,2,...,np} € R? for a d-dimensional system,
such that

F(#) = /i )

where F (7)) is the interpolate of f, the descriptor value at the ith fluid element. The RBF interpolate of the
function f has the form

np
F() = >l =7, (10)
=1
where || - || denotes the Euclidean norm, and ¢(||# — 7||) are the radial basis functions.

The coefficients of Eq. (10), d, are found by solving the linear system
2=, (1)

where @ is a collocation matrix with elements ¢, = ¢(||7; — 7|). A few examples of the some well-known
RBFs are

o) = (=1)"(F+ )" @m—2<p<2m), multi-quadrics,

d(r)= (5" + rz)_ﬁ/2 (p>0), inverse multi-quadrics,

$(r) = (=1)"r*" In(r), thinplate splines, (12)
o(r) = (=1)" (3 + )" In(8* + )", shifted thin-plate splines,

d(r) =e O, Gaussians.

One of the most popular radial basis functions is the multi-quadric (MQ) developed by Hardy [20].
Micchelli’s [40] has proved that the multi-quadric is always solvable for distinct data, and that the MQ
coefficient matrix of rank np has one positive real eigenvalue and (np — 1) negative real eigenvalues. The
multi-quadric with f =1 is the most widely used and has the form

o7 —Fll) = (12 + )", (13)
where
4 1/2
ry = (Z(xf‘ —x§)2> , (14)
=1

and where, for the purposes of this study, J is a parameter that is independent of the basis function. Because
the multi-quadrics have exponential convergence properties [39] and have been ranked the best in accuracy
of all RBFs according to Franke’s review paper [14], it was the RBF chosen for the models discussed in
Section 5.
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3.2. Optimization of RBF parameter

3.2.1. Background of RBF parameter optimization

It is well known that the choice of the parameter in Eq. (13) has a large influence on the interpolation
ability of the RBF basis [54]. To examine how the § parameter affects the shape of the multi-quadric basis
function, the limit of the function can be taken as 6 — oo and 6 — 0. From Fig. 1 it can seen that as §
increases, so does the relative smoothness of the basis function, however, at relatively large values of J, the
function becomes linear near the center and begins to “wash out” the coordinate dependence of the basis
function. This can lead to difficulties when trying to obtain distinct entries in the coefficient matrix for
better conditioning. On the other hand, as 6 — 0 the multi-quadric begins to have the shape of a cone with
a cusp or discontinuous derivative at the center. It is, therefore, easy to visualize why extremely small shape
parameters do not give very smooth interpolates and are generally not preferred. Understanding these
features and how they relate in the collocation-like scheme of RBF interpolation is vital when considering
optimization of the free parameter RBFs. Tarwater [54] has shown that the RMS errors of the interpolates
decrease with increasing ¢ until an optimum value is obtained, and that beyond this optimum value the
collocation matrix becomes extremely ill-conditioned, resulting in increasing errors. This optimum shape
parameter thus represents the best compromise between the smoothness of the interpolate and the con-
ditioning of the coefficient matrix. Obtaining J,, continues to be an active area of investigation in RBF
interpolation, and many papers have been written on circumventing the ill-conditioning of the coefficient
matrix to assuage this task (see [30]). A few of the proposed methods for determining good shape pa-
rameters include the following: Hardy’s use of the equation é = 0.815d, where d is the average distance
between the ith data point and its nearest neighbor [20], Foley’s scheme for selecting 6 by minimizing the
average root-mean-square (RMS) difference between the multi-quadric and inverse multi-quadric [13],

¢ (x)

Fig. 1. The multi-quadric radial basis function for five different 6 parameters. An important feature of this figure is the cusp that forms
as the parameter approaches zero, resulting in a discontinuous derivative at the origin of the basis function.
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Kansa and Carlson’s method of selecting local shape parameters (shape parameters that are basis function-
dependent) [29], and lastly, Rippa’s method of “cost” minimization [43], which is similar to Goldberg’s
method of cross-validation [15]. It is the purpose of this paper to investigate further, from the QTM
perspective, Rippa’s algorithm for shape parameter optimization through Cost functional minimization.

3.2.2. The cross-validation method

To optimize the multi-quadric shape parameter, a method for estimating the prediction error of each
trial 0 must be found. One way of doing this is to first portion the data set into N partitions, which may or
may not be of equal size. Using the N — 1 partitions as a new data set, often called the “learning set”, an
error can be calculated against the remaining data partition called the “validation set”. For each of the N
validation sets there is a corresponding error found by fitting its particular learning set. Each of the N error
terms can then be averaged to give the prediction error of the complete data set for a particular parameter
value. Such “resampling” methods make no assumptions on the statistics of the data or on the type of
model function being estimated. The above technique is known as cross-validation and is widely used for
parameter optimization problems [12,21]. Rippa’s algorithm for multi-quadric parameter optimization can
be compared to a form of cross-validation known as the “leave-one-out’” method. This particular form of
cross-validation is especially suitable for relatively small data sets, since large partitioning of an already
under-sampled data set can lead to misrepresentation of the function to be approximated. In the leave-one-
out method, one data point is used for error estimation and all other np — 1 data points are used as a new
data set. The prediction error for a particular parameter can then be calculated by averaging the np error
terms.

3.2.3. Rippa’s algorithm

In Rippa’s algorithm for choosing §, a ““Cost functional’ is minimized that imitates the behavior of the
RMS error between the interpolate and the unknown function from which the data vector, ]7, was sampled
[43]. The Cost functional is defined as the Z; norm of an error vector,

Cost(d) = Zp: IEd|, (15)

with error vector elements
E =fi —S®GFE), k=1,2,...,np, (16)

where f; is the function value at the kth data point, and

SOE) = D a7~ 7l (17)

J=1.j#k

is the interpolate of the function f found without using the data point 7, as a center. The learning set for a
particular E; can then be defined as all data values other than f;, which is the validation point in the leave-
one-out form of cross-validation.

Normally, the computational work of one evaluation of the Cost functional would require a LU de-
composition of the (np — 1) x (np — 1)-order linear system in addition to calculating all np error terms in
the vector E. However, Rippa’s derivation includes a method of obtaining E requiring only one LU de-
composition of the original system of equations

%3 = f, (18)
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plus the cost of N solutions to a new linear system
D) = ), (19)

where e®) is the kth column of the np x np identity matrix. Using Egs. (16)—(19), an error vector can be
derived such that
- a
Ex = fi = SW(E) = =5, 20
my

where a; and m,({k) are the kth coefficients of the two system of equations (for the full derivation, see [43]).
Utilizing the above equation gives O(np*) operations for the evaluation of one Cost function, the same
order as the original LU decomposition of @.

The effect of minimizing the Cost functional on a 2D normalized Gaussian function can be seen in Fig. 2,
plots (a) and (b). The graph of the Cost is similar in form, though not identical, to the graph of the RMS
error calculated from the test Gaussian. The most important feature of the two figures is the value of 5gco°§é
in comparison to 55;\:[3 found at an approximately quadratic minimum before numerical breakdown occurs
when 6 > 0.75. A significant result of the similarity between the two results is that by minimizing the Cost
as a function of ¢ and finding 5;:;’5;, one can simultaneously approximate 5?&43. In his paper on Cost
functional minimization, Rippa reports excellent correlation of the two minima, and his results for RBF/
MQ interpolation on several of Franke’s test functions were extremely accurate.

The only unfortunate feature of the leave-one-out algorithm is that an iterative procedure over the shape
parameter is required to obtain an approximate minimum to the Cost function. To reduce the number of
iterations needed, subroutines mnbrak and brent from Numerical Recipes [42] were used for the minimi-
zation procedure. On input, two initial shape parameters of 6 = 0.1 and 0.2 were used for bracketing the
minimum, and a tolerance of 0.01 was assigned for the convergence test in Brent’s method. The number of
iterations required to converge on a minimum were, on average, 9.5 for each interpolation. Because this
number was relatively small, utilization of Rippa’s algorithm at each time step to determine a time-de-
pendent shape parameter was feasible, though this iterative procedure was the rate-determining step in all
of the QTM/RBF models in Section 5.

0.05 0.001

0.04 0.0008
- 003 V2 0.0006
n
: 2
O

0.02 0.0004 |

0.01 0.0002 |

0 0
0 1 0 1

(a) 6 (b) 6

Fig. 2. Plots (a) and (b) illustrate the form of the Cost function and the average RMS error of a 2D normalized Gaussian test function,
f(x,») = Nexp 2(=39+0=57) The optimum RMS obtained from iteration was 7.96 x 10~°, corresponding to a § parameter of 0.56.
The value of the Cost minimization algorithm was 0.54, relatively close to the optimum value.
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4. Time discretization and propagation

After spatial discretization, Eqs. (4)—(6) become a set of ordinary differential equations in time and can
be numerically integrated quite easily. Five numerical integrators were studied and compared to test their
accuracy and time efficiency. To examine the accuracy of each integrator, a 2D free Gaussian wave packet
of the form (at t = 0)

2 , ! 2
l{l(x7y7 t) _ fxﬁ‘e*ﬁx(xfxo)zfﬂy(yfyo) (21)

was propagated in time by integrating the Lagrangian equations of motion, and the exact amplitude at each
time was calculated for comparison according to the analytical time-dependent solution. As stated before,
instead of propagating R(x, y, ¢) directly, C(x, y, ) was used to ensure exact quadratic polynomial fits and to
eliminate any spatial errors within machine precision. The analytical form for the time dependence of C for
a free 2D wave packet can be written as

1(1 1 1 1
Clx,y,t) = ) { 5 In(no,) + 5 In(ro,) +—(x — xo — Uxol)2 + Py (e Uyot)z} (22)

x y

with

2 2
S T S S (23)
2B, m 2B, m
where m, vy, vy, Xo, and )y are the mass, initial velocities, and initial positions of the fluid elements.
Table 1 lists the parameters of the initial wave packet.
The accuracy of five time integrators are compared in Table 2. Average errors were calculated according
to the equation

np

€Iror = L Z

exact calculated
eC(xJ/,t) _ eC(x,y,t) . (24)
np D

Also, all methods described as being implicit in Table 2 are only implicit in the amplitude update. The new
phase, position, and velocities are obtained explicitly by the integrator labeled before the forward slash. The

Table 1
Free 2D wave packet parameters
ﬂ.\’ 8a
B, 8
Energy 4500 cm™!
m (mass) 2000
(0, 0) (initial wave packet center) (0,0)
vy (all fluid elements given same initial x-velocity) 0.0045
vyo (all fluid elements given same initial y-velocity) 0
Ax (initial fluid element separation in x) 0.12
Ay (initial fluid element separation in y) 0.12
np (the total number of fluid elements) 11 x 11 grid, np = 121
dt (time step) 1.0

# All units are atomic (a.u.) unless otherwise given.
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Table 2

Comparison of the accuracy of five time integrators for a 2D free wave packet
Integration scheme Error®
Euler/trapezoid® 1.0078 x 10~
Leap frog (multi-step)® 2.6352 x 1077
Fourth-order Adam’s-Bashforth (multi-step) 1.9777 x 1071
Fourth-order Adam’s-Bashforth/Adam’s-Moulton (multi-step)® 1.5274 x 10710
Fourth-order Runge-Kutta 1.7718 x 10712

#Errors are taken after 2500 time steps.
®These time integrators use implicit routines for amplitude update.
© Multi-step integrators initiated with analytical solution for a free 2D wave packet.

amplitude can be updated implicitly by evaluating the V-7 in the exponential of Eq. (7) with the new
velocities calculated from the previously updated phase.

The semi-implicit Euler/trapezoid method was very time efficient but the least accurate, having a trun-
cation error of O(d¢). Because initiating steps or intermediate steps are not needed, the Euler/trapezoid code
can be executed as fast as the spatial discretization and derivative evaluations will allow. Unfortunately,
very small time steps are needed as the phase and amplitude become less smooth in time. By decreasing the
time step, the time efficiency of the Euler/trapezoid method is compromised to the point where it is no
longer a viable integration technique. Such was the motivation for studying higher-order numerical inte-
gration methods.

Another commonly used method of integration is the “leap frog” technique [42]. It is but one of the
many multi-step methods utilizing information from previous time steps to advance the solution to new
times. Other examples of multi-step methods include the Adam’s-Bashforth and Adam’s-Moulton al-
gorithms. Such methods are particularly attractive since a predetermined order of accuracy can be
obtained by increasing the number of prior time steps used in the extrapolation. The difficulty in the
multi-step methods, however, is initiating the integrator. Depending on the order of accuracy needed, a
given number of steps must be initiated with the same order of accuracy by either a highly accurate
one-step method, or by taking many smaller Euler steps within the given time step. In the results of
Table 2, the analytical time-dependent expressions for the phase and amplitude are used to propagate
the wave packet to obtain the initial time steps needed for extrapolation. According to the results
obtained, the increased accuracy of the “leap frog” two-step routine over the Euler/trapezoid method is
approximately three orders of magnitude. The increased accuracy is primarily due to the two-step
method having a truncation error of O(d#*) instead of O(dz). On moving from the two-step “leap frog”
method to the four-step Adam’s-Bashforth/Adam’s-Moulton method, the accuracy was increased by
approximately six orders of magnitude from the Euler/trapezoid method, a very dramatic improvement
due to the new truncation error of O(d#*). It should be emphasized that apart from initiating the
above multi-step algorithms, each requires about the same propagation time as an Euler/trapezoid
simulation.

The last numerical integration method studied was the fourth-order Runge-Kutta (RK4) algorithm.
Although RK4 is the least time efficient of the five methods studied, requiring four spatial derivative
evaluations for every interpolation at each time step, it is a one-step procedure and does not need to be
initiated. More importantly, RK4 is known for its robust ability to obtain accurate results for differential
equations with smooth to relatively “rough” or stiff solutions [42]. As can be seen from the table, RK4
produced highly accurate solutions for the free 2D wave packet. Although the results obtained from RK4
were the best of all the algorithms tried, it was not used as the primary time integrator since evaluating four
spatial derivative at each time step becomes very time consuming when coupled with the RBF shape pa-
rameter optimization.
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For the models discussed in this paper, the Adam’s-Bashforth/Adam’s-Moulton fourth-order semi-im-
plicit method was used as the time integrator. To initiate the multi-step algorithm, RK4 was used for the
first four time steps. This particular combination proved to be the best choice for relatively fast and ac-
curate solutions. It should be stated here that although a high-order time integrator was used, the amplitude
and phase are relatively smooth functions in time, and most of the difficulties with the QTM are not in
choosing the time-integrator or an appropriate time step, but in obtaining spatial derivatives needed for
substitution into the hydrodynamic equations of motion.

5. Models
5.1. Model 1: the anisotropic harmonic oscillator

To test the RBF/MQ interpolation algorithm using Cost functional minimization, a 2D anisotropic
harmonic oscillator potential of the form

V(x,y) =kx* + kay?, (25)

with force constants £, = 0.009 and &, = 0.036, was used. To obtain periodic motion of the type executed
by a classical oscillator, a wave packet must be used and the TDSE utilized for its time evolution. Table 3
lists the parameters of the propagated Gaussian wave packet.

The results of the time propagation can be seen in Fig. 3, plots (a)—(c). In plots (a) and (b), two cross-
sections are shown emphasizing the anisotropic symmetry of the harmonic well. Upon comparison, the x-
trajectories of the y cross-section have larger amplitudes and a longer period than the y-trajectories of the x
cross-section. This was expected since k, > k. Computational break down occurred after four x-periods
and eight y-periods of the oscillator (about 150 fs or 6100 time steps into the computation). Until this break
down occurred, the results are what were expected for the anisotropic oscillator. For example, in this
particular potential, a classical particle initiated at the center of the wavepacket follows a lissajous figure. In
the quantum simulation, the fluid element positioned at the center of initial quantum wave packet, where
there is no quantum potential, followed the same trajectory.

In Fig. 3, plot (c), the time-dependence of the multi-quadric shape parameter, is displayed for the am-
plitude interpolation over the period of evolution of the wave packet. At this point, it should be emphasized
that since the wave packet amplitude remains Gaussian in form throughout the entire computation, the log
of the amplitude is quadratic and can be easily reproduced from very few fluid elements using polynomial

Table 3
2D wave packet parameters for the anisotropic harmonic oscillator
B. 8
B, 8
Energy 8000 ¢cm™!
m 2000
(0, 30) (0,0)
Uxo 0.014
y0 0.023
Ax 0.12, 0.075
Ay 0.12, 0.075
np 11 x 11 grid, np = 121

17 x 17 grid, np = 289
dr 1.0
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Fig. 3. Plot (a) displays the x-coordinates of the quantum trajectories at the y = 0 cross-section for the anisotropic harmonic oscillator
potential described in model 1. Plot (b) shows the y-coordinates of the trajectories at the x = 0 cross-section. Plot (c) displays the time-
dependence of the shape parameter on the 11 x 11 grid.

least squares or interpolation schemes. However, because the purpose of the simulation was to test the
RBF/MQ scheme with a simple classical potential and obtain a description of the time-dependence of the
MQ shape parameter, this particular model was quite beneficial to the analysis. An important feature of
plot (¢) is the initial average decay of the optimized shape parameter. This particular feature will be seen in
each of the three models discussed. One explanation of the decay is that, initially, the grid is structured and
each of the fluid elements positions are computationally distinct from one another (by computationally
distinct, it is meant that the rows/columns of the RBF collocation matrix to be solved are computationally
more independent than in an unstructured grid, where fluid elements may be positioned very close together
leading to similar entries into the collocation matrix). As the rows and columns become more independent
the coefficient matrix becomes better conditioned, allowing for larger shape parameters. In time, as the grid
becomes unstructured, fluid elements may be “squeezed” together by the external potential, resulting in
small separations in their positions. In such a scenario, the rows/columns become more dependent, and the
coefficient matrix becomes ill-conditioned, giving rise to smaller shape parameters from the optimization
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algorithm. In the anisotropic oscillator model, the fluid elements were squeezed together as the wave packet
reflected off the edges of the potential well.

A second important feature of Fig. 3, plot (¢), is that the optimized shape parameters chosen throughout
the wave packet propagation were mostly scattered between 0.60 < 6 < 0.80. This large fluctuation in the
shape parameter was found when the initial grid was relatively coarse, such as the 11 x 11 grid used in this
model. In a second isotropic harmonic oscillator model studied, a finer 17 x 17 grid was used. On this grid,
there was less fluctuation about the average, as most of the optimized shape parameters were in the range of
0.40 < 0 <0.50 (see Fig. 4). It is also important to notice that for higher resolution grids, such as the 17 x 17
case where there are more fluid elements with smaller separations, smaller shape parameters are chosen by
the optimization algorithm.

The spreading of the é parameter for coarse grids, such as the 11 x 11 example, provides an explanation
for the success of the time-independent shape parameters used in past RBF/QTM models, since most
constant parameters within this range will, in general, be suitable for multi-quadric interpolation. Also,
because of the notoriously ill-conditioned RBF coefficient matrix, studies, such as those by Hu [24,25], are
limited to few grid points with relatively large initial fluid element separation. While coarse grids are all that
is needed for amplitudes that remain Gaussian/quadratic in time, such as the free particle and harmonic
oscillator, greater resolution is needed for more interesting problems that may include scattering from
barriers and interference effects. As the grid resolution increases, the fluctuation range of the optimized
shape parameters becomes smaller, and while this may not be a problem for models with a relatively
constant optimal ¢ parameter, it may present problems if a time-dependent shape parameter is needed, such
as in model 3.

Lastly, it should be emphasized that though a constant ¢ is all that is needed for some simple models
such as the free Gaussian wave packet or the propagation of a Gaussian wave packet in a harmonic po-
tential, Rippa’s optimization algorithm can be very beneficial for initiating the wave packet propagation.
For example, instead of iterating over a large number of parameters to obtain one suitable for use in the
simulation, the parameter can be chosen automatically by the optimization algorithm.
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Fig. 4. The time-dependence of the shape parameter for the anisotropic harmonic oscillator potential of model 1 usinga 17 x 17 grid.
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5.2. Model 2: the downhill and uphill ramp

5.2.1. The downhill ramp
The second model studied was the evolution of an initial 2D Gaussian wave packet on a downhill ramp
potential energy surface of the form

V(x) &

T 1te 256D (26)

with ¥, = —1500 cm™!. This particular model is important for understanding exothermic reaction kinetics
and photodissociation on excited state potential energy surfaces. Of course, since the external potential is
independent of the y-coordinate, the Schrodinger time-dependent wave equation can be separated and
solved as two independent 1D problems. However, because the purpose of this study was to gain insight
into how the optimum multi-quadric shape parameter changes in a time-dependent simulation, and
knowing that the 2D coefficient matrix plays a vital role when finding this parameter, the simulation was
carried out as a 2D study. A similar 1D quantum trajectory analysis on the downhill ramp potential can be
referenced in Lopreore and Wyatt’s study [31].

The initial wave packet parameters for the downhill ramp model are listed in Table 4. Four different
simulations were studied with initial wave packet energies of 0, 500, 1500, and 8000 cm™!, respectively. The
transmission probabilities, found by numerically integrating the probability density of all fluid elements
with locations x; > 2.2, are shown in Fig. 5, plot (a). Convergence on a transmission probability was ob-
tained for the two higher energy wave packets, however, as can be seen from the plot, the wave packets with
initial energies of 0 and 500 cm~! did not converge completely, though the simulations proceeded to ex-
tremely large times (over 15,000 time steps) without breakdown. Incorrect transmission probabilities at
large times were expected, however, since relatively few fluid elements were used initially, and these fluid
elements were scattered at large distances asymmetrically as time progressed. The result of the low reso-
lution was a breakdown of the trapezoid method used for numerical integration. Because of this, only the
first 70 fs (approximately 5800 time steps) are displayed in plots (a)—(c).

Plot (b) of Fig. 5 shows x trajectories at the y = 0 cross-section for the 1500 cm ™' initial energy wave
packet. One important feature of this plot is the reflection of the first three fluid elements to the —x di-
rection. Classically, there is no turning point, and all the fluid elements will proceed down the potential
ramp while increasing velocity. However, it is well known that in the quantum case, wave packet reflection
can occur, resulting in only partial transmission of the total probability.

Lastly, in Fig. 5, plot (c), the 6 parameter for the amplitude interpolation was plotted vs. time for the
wave packet with energy 1500 cm™~!. Other than the previously discussed initial exponential decay, there

1

Table 4
2D wave packet parameters for the downhill ramp
B. 8
B, 8
Energy 0, 500, 1500, 8000 cm™!
m 2000
(x0,0) (0,0
Uyo 0, 0.0023, 0.0068, 0.0365
Uyo 0
Ax 0.075
Ay 0.075
np 17 x 17 grid, np = 289

dt 0.5
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Fig. 5. Plot (a) displays the QTM/RBF results for the transmission probability as a function of time for four wave packets of different
energies traveling on a downbhill potential. The solid line was calculated from a finite difference, fixed-grid method. Plot (b) shows x
trajectories at the y = 0 cross-section for the wave packet with energy of 1500 cm™". Plot (c) displays the optimized shape parameter in
time for the same energy wave packet.

seems to be no general trend in the parameters chosen for each of the simulations. One thing to notice,
however, is the inexplicable growing oscillation that occurs in time. Since there is no oscillation of the
amplitude in any of the above simulations, this particular feature must be related to the numerical algo-
rithms used in the ¢ parameter optimization or the QTM driver code.

Each of the four simulations for model 2 was also studied with a constant multi-quadric shape parameter
of 0.4. Because of the extremely small reflection probability for the wave packet energies studied, there was
no difficulty in the time propagation of the wave packets for this parameter, and comparable results to that
of the time-dependent parameter simulations were obtained.

5.2.2. The uphill ramp

In this study, five wave packets of different energies were propagated using the same potential as the
downhill ramp, Eq. (26), only with 7 = +1500 cm™'. Table 5 displays the initial conditions used for this
model. Propagation of a wave packet into an uphill ramp presents a slightly more complicated model than
that of the downhill potential since more bifurcation can occur resulting in large interference effects in the
reflected part of the wave packet. Ideally, a finer grid resolution than 17 x 17 is needed to capture all of the
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features of the solution in time (such as the “ripples” in the reflected packet); however, accurate trans-
mission probabilities can still be obtained without high resolution, as can be seen from the results in Fig. 6,
plot (a). The wave packets on the uphill potential, however, did not propagate as far as those on the
downhill potential, and the QTM algorithm broke down soon after 50 fs (4100 time steps).

In Fig. 6, plot (b), the time-dependence of the multi-quadric shape parameter is shown. The results show
a relatively constant optimal parameter until about 32 fs, at which the average parameter value begins to
decay until computational break down. This decay was a typical “forecasting’ of the break down of the
QTMY/RBEF algorithm, most likely occurring from growing interpolation errors in regions of few grid points
and large solution gradients or curvatures. It should be emphasized that these errors were due to the low-
resolution grids used in the interpolation algorithm and not the inherent nature of the solution in the
models discussed. Another likely explanation of the QTM/RBF algorithm break down is that as time
progresses, trajectories can approach one another and grid points separations can be very small. As stated
before, such is a rather unfortunate feature of Lagrangian schemes, and the affect is further aggravated by
the conditioning of the RBF coefficient matrix.

Table 5
2D wave packet parameters for the uphill ramp
B, 8
B, 8
Energy 500, 1500, 3000, 4500, 6000 cm™!
m 2000
(x0,0) (0,0)
Uyo 0.0022, 0.0068, 0.0137, 0.0205, 0.0273
Uyo 0
Ax 0.075
Ay 0.075
np 17 x 17 grid, np = 289
dr 0.5
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Fig. 6. Plot (a) displays the QTM/RBF results for the transmission probability as a function of time for five wave packets of different
energies traveling on an uphill ramp potential. The solid line was calculated from a finite difference, fixed-grid method. Plot (b) shows
the time-dependence of the multi-quadric shape parameter for the wave packet with an energy of 1500 cm™'.
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When the uphill potential was studied with a constant shape parameter, it was found that with 6 = 0.26
the simulation survived for approximately the same number of time steps as the time-dependent parameter
study. In this case, once again, using a time-dependent algorithm would not be necessary and would only
increase the time taken for the simulation while having little effect on the accuracy of the solution. This may
not be the case, however, for all uphill potentials, since interference affects are amplified as the ramp be-
comes steeper. To find a model where it is necessary to utilize a time-dependent algorithm, it seems that a
more complicated potential should be introduced.

5.3. Model 3: the downhill ramplharmonic oscillator

The last model studied was the propagation of an initial 2D Gaussian wave packet under the external
potential

" 1 2 1
Vix,y) = 1T 1L a250-1) +5 by < 1 + e256—1) + 1 + e—256-1) ) ) (27)
with 7} < 0 and ¥, > 0 (see Fig. 7). Such a potential, for example, may represent a molecule’s vibrational
relaxation during an exothermic reaction. Because of the (x, y) coordinate coupling, this particular potential
energy surface does not allow for a separable solution of the Schrodinger equation, thus presenting an even
more complicated and interesting problem than that of the first two models. Table 6 displays the initial
conditions used in the simulation.

Fig. 8 shows the time-development of the initial Gaussian wave packet in the harmonic oscillator/
downhill ramp potential. Because most of the errors associated with the simulation accumulate at the

25
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Fig. 7. A mesh—contour plot of the downhill ramp/harmonic oscillator potential used in model 3. All units are in a.u.
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Table 6
2D wave packet parameters for the downhill ramp/harmonic oscillator
B. 8
B, 8
Energy 1500 cm™!
m 2000
(x0,0) 0,0)
Uxo 0.0068
Uyg O
Ax 0.075
Ay 0.075
np 17 x 17 grid, np = 289
dr 0.5
0fs 16 fs
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Fig. 8. Time-evolution of the density, p, for an initial Gaussian wave packet under the influence of the harmonic oscillator/downhill
ramp potential described in model 3.
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boundaries, only the inner 225 of the 289 fluid elements were plotted in this figure. The effect of the vi-
brational relaxation for those fluid elements that are transmitted becomes evident in the asymmetry of the
grid as it is propagated in time. The wave packet was propagated for 50 fs, with computational break down
occurring shortly thereafter.

Lastly, Fig. 9 shows how the optimum MQ shape parameter changes with time. Although there is the
same decay in the ¢ parameter as with the uphill ramp, the trend has a slightly more complicated form. In
this model, the decay begins at t = 0 and continues until approximately 15 fs, where there is a rise and
subsequent oscillation in the shape parameter for about 10 fs, until the decay occurs again. The effect of this
complicated trend of the shape parameter on the survival time of the simulation can be seen in Fig. 10. In
this figure, independent trial simulations were conducted on the harmonic oscillator/downhill ramp po-
tential energy surface using 23 different constant shape parameters ranging from 0.1 to 0.54. Each simu-
lation was allowed to run until computational breakdown occurred. The number of time steps taken before
breakdown for each of the constant MQ shape parameters is plotted in this figure. The longest constant
parameter trial simulation proceeded for 2873 time steps, or 34.76 fs. When the same simulation was
conducted with the é optimizing algorithm, the simulation survived for 4389 time steps, a remarkable 53%
increase in the survival time of the simulation. Because of these results, it is apparent that for this particular
model, a time-dependent MQ shape parameter is needed for more accurate interpolations as the amplitude
and phase progress in time. An explanation of this could be that the initial Gaussian wave packet, evolved
under the harmonic oscillator/downhill ramp potential energy surface, suffers more amplitude or phase
distortion than that of models 1 and 2. Because the optimum shape parameter depends on the form of the
function to be interpolated, this distortion may change the optimum ¢ in time such that any constant
parameter will not perform as well as a time-dependent shape parameter, which can adapt to the function
deformation. Also, as can be seen from Fig. 8, the Lagrangian grid structure established in time by the
moving fluid elements becomes very irregular due to the (x,y) coupling not seen in the first few models of
this study. Because of this evolving grid structure, the conditioning of the coefficient matrix may change
with time, resulting in a significant difference between the chosen optimal shape parameters as time moves
on. A time-dependent 6 choosing algorithm alleviates this problem, since it can adapt to not only the
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Fig. 9. Time-dependence of the multi-quadric shape parameter for model 3.
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Fig. 10. The number of time steps taken before computational breakdown (7Sp.x) of model 3 while using a constant MQ shape
parameter. The largest number of time steps propagated, 2873, was with a constant shape parameter of 0.24. By using a time-de-
pendent shape parameter, the number of time steps before breakdown was increased by approximately 53%.

form of the function to be interpolated, but also to the grid structure defined by the current fluid element
arrangement.

6. Conclusion

In conclusion of this study, a few statements must be made concerning the results of Section 5 and the
practical use of free-parameter radial basis function interpolation in the quantum trajectory method. It
should be reemphasized that a good RBF shape parameter represents the best possible compromise be-
tween the inherent ill-conditioning of the RBF coefficient matrix and the smoothest possible interpolate.
Prior to this study, radial basis function interpolation in quantum hydrodynamics has been performed with
time-constant shape parameters [24,25]. While this strategy may work quite well for some quantum me-
chanical problems, this may not be the case for more complicated potentials such as the one used in model 3
of this study. It was shown that in certain models, especially those in which the function to be interpolated
is greatly distorted from its original form, a time-dependent shape parameter can dramatically increase the
survival time of the computation. The cost of finding a new parameter at each time step, however, can
become time consuming, and depending on the algorithm for finding the parameter, maybe unreasonable.
Rippa’s technique [43] for obtaining a good shape parameter was at least nine times slower than a constant
parameter RBF interpolation. In a 2D simulation with few grid points, this was an acceptable sacrifice for
the increase in survival time; however, it may not be reasonable for 3D or higher-dimensional models. In
such cases where time cannot be sacrificed, a suitable shape parameter algorithm can be implemented
initially and then periodically recalled throughout the simulation instead of at every time step.

Lastly, although optimized RBF interpolation has provided reasonable results for the simple
QTM problems discussed in this study, it should be emphasized that it does not completely solve the
computational problems associated with the Lagrangian QTM. As time progressed, some grid regions were
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under-sampled while others were over-sampled, leading to poor derivative estimates. One way to remedy
this problem is to use more fluid elements; however, the number of fluid elements was limited by the
conditioning of the RBF coefficient matrix. Because of this, some models attempted such as the trans-
mission of a wave packet through an Eckart barrier, were not as successful. Ideally, a relatively high-
resolution grid is needed for such a model since interference effects result in oscillations in the reflected
amplitude that are difficult to interpolate on an under-sampled mesh. Also, to properly utilize larger grids in
radial basis function interpolation, domain decomposition must be incorporated into the algorithm to
reduce the size of the coefficient matrix. In the future, higher resolution Lagrangian meshes will be further
studied with optimized radial basis function interpolation so that more complicated potentials, such as the
Eckart barrier, can be solved.
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